Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 419
Filtrar
1.
Nat Commun ; 15(1): 3123, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600179

RESUMO

Stretchable neuromorphic optoelectronics present tantalizing opportunities for intelligent vision applications that necessitate high spatial resolution and multimodal interaction. Existing neuromorphic devices are either stretchable but not reconcilable with multifunctionality, or discrete but with low-end neurological function and limited flexibility. Herein, we propose a defect-tunable viscoelastic perovskite film that is assembled into strain-insensitive quasi-continuous microsphere morphologies for intrinsically stretchable neuromorphic vision-adaptive transistors. The resulting device achieves trichromatic photoadaptation and a rapid adaptive speed (<150 s) beyond human eyes (3 ~ 30 min) even under 100% mechanical strain. When acted as an artificial synapse, the device can operate at an ultra-low energy consumption (15 aJ) (far below the human brain of 1 ~ 10 fJ) with a high paired-pulse facilitation index of 270% (one of the best figures of merit in stretchable synaptic phototransistors). Furthermore, adaptive optical imaging is achieved by the strain-insensitive perovskite films, accelerating the implementation of next-generation neuromorphic vision systems.

3.
Ecotoxicol Environ Saf ; 275: 116272, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38564870

RESUMO

This study investigated the influence of Cd (25 µM) on Zn accumulation in a hyperaccumulating (HE) and a non-hyperaccumulating (NHE) ecotype of Sedum alfredii Hance at short-term supply of replete (Zn5, 5 µM) and excess (Zn400, 400 µM) Zn. Cd inhibited Zn accumulation in both ecotypes, especially under Zn400, in organs with active metal sequestration, i.e. roots of NHE and shoots of HE. Direct biochemical Cd/Zn competition at the metal-protein interaction and changes in transporter gene expression contributed to the observed accumulation patterns in the roots. Specifically, in HE, Cd stimulated SaZIP4 and SaPCR2 under Zn5, but downregulated SaIRT1 and SaZIP4 under Zn400. However, Cd downregulated related transporter genes, except for SaNRAMP1, in NHE, irrespective of Zn. Cadmium stimulated casparian strip (CSs) development in NHE, as part of the defense response, while it had a subtle effect on the (CS) in HE. Moreover, Cd delayed the initiation of the suberin lamellae (SL) in HE, but stimulated SL deposition in NHE under both Zn5 or Zn400. Changes in suberization were mainly ascribed to suberin-biosynthesis-related genes and hormonal signaling. Altogether, Cd regulated Zn accumulation mainly via symplasmic and transmembrane transport in HE, while Cd inhibited both symplasmic and apoplasmic Zn transport in NHE.


Assuntos
Sedum , Poluentes do Solo , Zinco/metabolismo , Cádmio/metabolismo , Sedum/metabolismo , Transporte Biológico , Transporte de Íons , Raízes de Plantas/metabolismo , Poluentes do Solo/análise
4.
Nat Commun ; 15(1): 2062, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453927

RESUMO

Metal-nitrogen-carbon catalysts with hierarchically dispersed porosity are deemed as efficient geometry for oxygen reduction reaction (ORR). However, catalytic performance determined by individual and interacting sites originating from structural heterogeneity is particularly elusive and yet remains to be understood. Here, an efficient hierarchically porous Fe single atom catalyst (Fe SAs-HP) is prepared with Fe atoms densely resided at micropores and mesopores. Fe SAs-HP exhibits robust ORR performance with half-wave potential of 0.94 V and turnover frequency of 5.99 e-1s-1site-1 at 0.80 V. Theoretical simulations unravel a structural heterogeneity induced optimization, where mesoporous Fe-N4 acts as real active centers as a result of long-range electron regulation by adjacent microporous sites, facilitating O2 activation and desorption of key intermediate *OH. Multilevel operando characterization results identify active Fe sites undergo a dynamic evolution from basic Fe-N4 to active Fe-N3 under working conditions. Our findings reveal the structural origin of enhanced intrinsic activity for hierarchically porous Fe-N4 sites.

5.
Angew Chem Int Ed Engl ; 63(17): e202400061, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38440917

RESUMO

The lack of ambipolar polymers with balanced hole (µh) and electron mobilities (µe) >10 cm2 V-1 s-1 is the main bottleneck for developing organic integrated circuits. Herein, we show the design and synthesis of a π-extended selenium-containing acceptor-dimeric unit, namely benzo[c][1,2,5]selenadiazol-4-yl)ethane (BBSeE), to address this dilemma. In comparison to its sulfur-counterpart, BBSeE demonstrates enlarged co-planarity, selective noncovalent interactions, polarized Se-N bond, and higher electron affinity. The successful stannylation of BBSeE offers a great opportunity to access acceptor-acceptor copolymer pN-BBSeE, which shows a narrower band gap, lower-lying lowest unoccupied molecular orbital level (-4.05 eV), and a higher degree of backbone planarity. Consequently, the pN-BBSeE-based organic transistors display an ideally balanced ambipolar transporting property with µh and µe of 10.65 and 10.72 cm2 V-1 s-1, respectively. To the best of our knowledge, the simultaneous µh/µe values >10.0 cm2 V-1 s-1 are the best performances ever reported for ambipolar polymers. In addition, pN-BBSeE shows an excellent shelf-storage stability, retaining over 85 % of the initial mobility values after two months storage. Our study demonstrates the π-extended acceptor-dimeric BBSeE is a promising acceptor building block for constructing high-performance ambipolar polymers applied in next-generation organic integrated circuit.

6.
Chem Sci ; 15(12): 4590-4601, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38516086

RESUMO

π-Conjugated macrocycles have been highly attractive due to their challenging synthesis, fascinating aesthetic structure and unique physical and chemical properties. Although some progress has been made in synthesis, the study of π-macrocycles with different structural characteristics and supramolecular interactions still faces major challenges. In this paper, two new single-bond linked macrocycles (MS-4T/MS-6T) were reported, and the corresponding vinyl-bridged heterocycloarenes (MF-4T/MF-6T) were synthesized by the periphery fusion strategy. Further studies have indicated that the structure of these four macrocycles is determined by both size and curvature, showing unique variations from nearly planar to bowl and then to saddle. Interestingly, the nearly planar MS-4T with a small size and the rigid saddle-shaped MF-6T show no obvious response to fullerenes C60 or C70, while the bowl-shaped MS-6T and MF-4T demonstrate a strong binding affinity towards fullerenes C60 and C70. What's more, two kinds of co-crystals with capsule-like configurations, MS-6T@C60 and MS-6T@C70, have been successfully obtained, among which the former shows a loose columnar arrangement while the latter displays a unique three-dimensional honeycomb arrangement that is extremely rare in supramolecular complexes. This work systematically studies the π-conjugated macrocycles and provides a new idea for the development of novel host-guest systems and further multifunctional applications.

7.
Adv Mater ; : e2313661, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499342

RESUMO

Petroleum, as the "lifeblood" of industrial development, is the important energy source and raw material. The selective transformation of petroleum into high-end chemicals is of great significance, but still exists enormous challenges. Single-atom catalysts (SACs) with 100% atom utilization and homogeneous active sites, promise a broad application in petrochemical processes. Herein, the research systematically summarizes the recent research progress of SACs in petrochemical catalytic reaction, proposes the role of structural design of SACs in enhancing catalytic performance, elucidates the catalytic reaction mechanisms of SACs in the conversion of petrochemical processes, and reveals the high activity origins of SACs at the atomic scale. Finally, the key challenges are summarized and an outlook on the design, identification of active sites, and the appropriate application of artificial intelligence technology is provided for achieving scale-up application of SACs in petrochemical process.

8.
Nat Commun ; 15(1): 2624, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521822

RESUMO

Challenges associated with stretchable optoelectronic devices, such as pixel size, power consumption and stability, severely brock their realization in high-resolution digital imaging. Herein, we develop a universal detachable interface technique that allows uniform, damage-free and reproducible integration of micropatterned stretchable electrodes for pixel-dense intrinsically stretchable organic transistor arrays. Benefiting from the ideal heterocontact and short channel length (2 µm) in our transistors, switching current ratio exceeding 106, device density of 41,000 transistors/cm2, operational voltage down to 5 V and excellent stability are simultaneously achieved. The resultant stretchable transistor-based image sensors exhibit ultrasensitive X-ray detection and high-resolution imaging capability. A megapixel image is demonstrated, which is unprecedented for stretchable direct-conversion X-ray detectors. These results forge a bright future for the stretchable photonic integration toward next-generation visualization equipment.

9.
Nat Commun ; 15(1): 2397, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493210

RESUMO

Nanoclusters with atomically precise structures and discrete energy levels are considered as nanoscale semiconductors for artificial intelligence. However, nanocluster electronic engineering and optoelectronic behavior have remained obscure and unexplored. Hence, we create nanocluster photoreceptors inspired by mantis shrimp visual systems to satisfy the needs of compact but multi-task vision hardware and explore the photo-induced electronic transport. Wafer-scale arrayed photoreceptors are constructed by a nanocluster-conjugated molecule heterostructure. Nanoclusters perform as an in-sensor charge reservoir to tune the conductance levels of artificial photoreceptors by a light valve mechanism. A ligand-assisted charge transfer process takes place at nanocluster interface and it features an integration of spectral-dependent visual adaptation and circular polarization recognition. This approach is further employed for developing concisely structured, multi-task, and compact artificial visual systems and provides valuable guidelines for nanocluster neuromorphic devices.

10.
Angew Chem Int Ed Engl ; 63(19): e202319027, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38488819

RESUMO

Heterocycle-linked phthalocyanine-based COFs with close-packed π-π conjugated structures are a kind of material with intrinsic electrical conductivity, and they are considered to be candidates for photoelectrical devices. Previous studies have revealed their applications for energy storage, gas sensors, and field-effect transistors. However, their potential application in photodetector is still not fully studied. The main difficulty is preparing high-quality films. In our study, we found that our newly designed benzimidazole-linked Cu (II)-phthalocyanine-based COFs (BICuPc-COFs) film can hardly formed with a regular aerobic oxidation method. Therefore, we developed a transfer dehydrogenation method with N-benzylideneaniline (BA) as a mild reagent. With this in hand, we successfully prepared a family of high crystalline BICuPc-COFs powders and films. Furthermore, both of these new BICuPc-COFs films showed high electrical conductivity (0.022-0.218 S/m), higher than most of the reported COFs materials. Due to the broad absorption and high conductivity of BICuPc-COFs, synaptic devices with small source-drain voltage (VDS=1 V) were fabricated with response light from visible to near-infrared. Based on these findings, we expect this study will provide a new perspective for the application of conducting heterocycle-linked COFs in synaptic devices.

11.
Cardiovasc Diagn Ther ; 14(1): 143-157, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38434562

RESUMO

Background: Previous studies have confirmed that choline exerts anti-fibrotic effect in the heart by activating the M3 subtype of muscarinic acetylcholine receptor (M3 receptor), but the mechanism remains to be clarified. MicroRNA-29b (miR-29b) plays an important role in the fibrotic process and can directly target collagen to resist myocardial fibrosis. This study investigated whether miR-29b is involved in the anti-fibrotic effect of activating M3 receptor. Methods: Proliferation of cardiac fibroblasts was induced by transforming growth factor (TGF)-ß1 in vitro. The expression of miR-29b in cardiac fibroblasts was detected by quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR). Protein levels of collagens I, connective tissue growth factor (CTGF), α-smooth muscle actin (α-SMA) and beta-site app cleaving enzyme 1 (BACE1) were determined by Western blot analysis. Fibroblast-myofibroblast transition was identified by immunofluorescence staining. Proliferation and migration of cardiac fibroblasts as indicated by transwell and scratch assays. Results: The expression of miR-29b decreased when treated with TGF-ß1 (P=0.0389) and increased after choline stimulated (P=0.0001). Overexpression of miR-29b could reverse the high expression of collagen I (P<0.0001), α-SMA (P=0.0007), and CTGF (P=0.0038) induced by TGF-ß1, whereas inhibition of miR-29b had a tendency to even further increase the expression of fibrosis markers. Meanwhile, inhibition of miR-29b could reverse the anti-fibrotic effect of choline, increasing the expression of collagen I (P=0.0040), α-SMA (P=0.0001), and CTGF (P=0.0185), and promoting the fibroblast proliferation and migration. Moreover, BACE1 protein level, increased after TGF-ß1 treatment (P=0.0037) and reversed by overexpression of miR-29b (P=0.0493). Choline could reduce the increase of BACE1 induced by TGF-ß1 (P=0.0264), and 4-diphenylacetoxy-N-methyl-piperidine methiodide (4-DAMP) increased the expression of BACE1 (P=0.0060). Furthermore, overexpression of BACE1 could reverse the protective effect of miR-29b in cardiac fibrosis, increasing the protein level of collagen I (P=0.0404). Conclusions: The results suggested that M3 receptor activation could exert cardioprotective effects in cardiac fibrosis by mediating miR-29b/BACE1 axis.

12.
Nano Lett ; 24(13): 3914-3921, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38513214

RESUMO

Establishing a multivalent interface between the biointerface of a living system and electronic device is vital to building intelligent bioelectronic systems. How to achieve multivalent binding with spatial tolerance at the nanoscale remains challenging. Here, we report an antibody nanotweezer that is a self-adaptive bivalent nanobody enabling strong and resilient binding between transistor and envelope proteins at biointerfaces. The antibody nanotweezer is constructed by a DNA framework, where the nanoscale patterning of nanobodies along with their local spatial adaptivity enables simultaneous recognition of target epitopes without binding stress. As such, effective binding affinity increases by 1 order of magnitude compared with monovalent antibody. The antibody nanotweezer operating on transistor offers enhanced signal transduction, which is implemented to detect clinical pathogens, showing ∼100% overall agreement with PCR results. This work provides a perspective of engineering multivalent interfaces between biosystems with solid-state devices, holding great potential for organoid intelligence on a chip.


Assuntos
Anticorpos de Domínio Único , Epitopos , Transdução de Sinais
13.
Natl Sci Rev ; 11(3): nwad253, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38312388

RESUMO

Recent progress in multifunction-oriented high-mobility polymer semiconductors is profiled, with current challenges and future directions proposed in this perspective.

14.
J Exp Bot ; 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38394357

RESUMO

Endophytic symbioses between plants and fungi are a dominant feature of many terrestrial ecosystems, yet little is known about the signaling that defines these symbiotic associations. Hydrogen peroxide (H2O2) is recognized as a key signal mediating the plant adaptive response to both biotic and abiotic stresses. However, the role of H2O2 in plant-fungal symbiosis remains elusive. Using a combination of physiological analysis, plant and fungal deletion mutants, and comparative transcriptomics, we reported that various environmental conditions differentially affect the interaction between Arabidopsis and a root endophyte Phomopsis liquidambaris, and link this process to alterations in H2O2 levels and H2O2 fluxes across root tips. We found that enhanced H2O2 efflux leading to a moderate increase in H2O2 levels at the plant-fungal interface is required for maintaining plant-fungal symbiosis. Disturbance of plant H2O2 homeostasis compromises the symbiotic ability of plant roots. Moreover, the fungus-regulated H2O2 dynamics modulate the rhizosphere microbiome by selectively enriching for the phylum Cyanobacteria, with strong antioxidant defenses. Our results demonstrated that the regulation of H2O2 dynamics at the plant-fungal interface affects the symbiotic outcome in response to external conditions and highlight the importance of root endophyte in reshaping the rhizosphere microbiota.

15.
J Agric Food Chem ; 72(7): 3814-3831, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38329036

RESUMO

Common wheat (Triticum aestivum L.) is a global staple food, while nitrogen (N) limitation severely hinders plant growth, seed yield, and grain quality of wheat. Genetic variations in the responses to low N stresses among allohexaploid wheat (AABBDD, 2n = 6x = 42) genotypes emphasize the complicated regulatory mechanisms underlying low N tolerance and N use efficiency (NUE). In this study, hydroponic culture, inductively coupled plasma mass spectrometry, noninvasive microtest, high-performance liquid chromatography, RNA-seq, and bioinformatics were used to determine the differential growth performance, ionome and phytohormone profiles, and genome-wide expression profiling of wheat plants grown under high N and low N conditions. Transcriptional profiling of NPFs, NRT2s, CLCs, SLACs/SLAHs, AAPs, UPSs, NIAs, and GSs characterized the core members, such as TaNPF6.3-6D, TaNRT2.3-3D, TaNIA1-6B, TaGLN1;2-4B, TaAAP14-5A/5D, and TaUPS2-5A, involved in the efficient transport and assimilation of nitrate and organic N nutrients. The low-N-sensitivity wheat cultivar XM26 showed obvious leaf chlorosis and accumulated higher levels of ABA, JA, and SA than the low-N-tolerant ZM578 under N limitation. The TaMYB59-3D-TaNPF7.3/NRT1.5-6D module-mediated shoot-to-root translocation and leaf remobilization of nitrate was proposed as an important pathway regulating the differential responses between ZM578 and XM26 to low N. This study provides some elite candidate genes for the selection and breeding of wheat germplasms with low N tolerance and high NUE.


Assuntos
Reguladores de Crescimento de Plantas , Triticum , Triticum/genética , Triticum/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Nitrogênio/metabolismo , Nitratos/metabolismo , Melhoramento Vegetal
16.
Angew Chem Int Ed Engl ; 63(9): e202317876, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38193266

RESUMO

Constructing uniform covalent organic framework (COF) film on substrates for electronic devices is highly desirable. Here, a simple and mild strategy is developed to prepare them by polymerization on a solid-liquid interface. The universality of the method is confirmed by the successful preparation of five COF films with different microstructures. These films have large lateral size, controllable thickness, and high crystalline quality. And COF patterns can also be directly achieved on substrates via hydrophilic and hydrophobic interface engineering, which is in favor of preparing device array. For application studies, the PyTTA-TPA (PyTTA: 4,4',4'',4'''-(1,3,6,8-Tetrakis(4-aminophenyl)pyrene and TPA: terephthalaldehyde) COF film has a high photoresponsivity of 59.79 µA W-1 at 420 nm for photoelectrochemical (PEC) detection. When employed as an active material for optoelectronic synaptic devices for the first attempt, it shows excellent light-stimulated synaptic plasticity properties such as short-term plasticity (STP), long-term plasticity (LTP), and the conversion of STP to LTP, which can be used to simulate biological synaptic functions.

17.
Adv Mater ; 36(15): e2312540, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38288781

RESUMO

On-site diagnostic tests that accurately identify disease biomarkers lay the foundation for self-healthcare applications. However, these tests routinely rely on single-mode signals and suffer from insufficient accuracy, especially for multiplexed point-of-care tests (POCTs) within a few minutes. Here, this work develops a dual-mode multiclassification diagnostic platform that integrates an electrochemiluminescence sensor and a field-effect transistor sensor in a microfluidic chip. The microfluidic channel guides the testing samples to flow across electro-optical sensor units, which produce dual-mode readouts by detecting infectious biomarkers of tuberculosis (TB), human rhinovirus (HRV), and group B streptococcus (GBS). Then, machine-learning classifiers generate three-dimensional (3D) hyperplanes to diagnose different diseases. Dual-mode readouts derived from distinct mechanisms enhance the anti-interference ability physically, and machine-learning-aided diagnosis in high-dimensional space reduces the occasional inaccuracy mathematically. Clinical validation studies with 501 unprocessed samples indicate that the platform has an accuracy approaching 99%, higher than the 77%-93% accuracy of rapid point-of-care testing technologies at 100% statistical power (>150 clinical tests). Moreover, the diagnosis time is 5 min without a trade-off of accuracy. This work solves the occasional inaccuracy issue of rapid on-site diagnosis, endowing POCT systems with the same accuracy as laboratory tests and holding unique prospects for complicated scenes of personalized healthcare.


Assuntos
Sistemas Automatizados de Assistência Junto ao Leito , Testes Imediatos , Humanos , Microfluídica , Biomarcadores
18.
Adv Mater ; 36(2): e2307326, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37849381

RESUMO

Perovskites field-effect transistors (PeFETs) have been intensively investigated for their application in detector and synapse. However, synapse based on PeFETs is still very difficult to integrate excellent charge carrier transporting ability, photosensitivity, and nonvolatile memory effects into one device, which is very important for developing bionic electronic devices and edge computing. Here, two-dimensional (2D) perovskites are synthesized by incorporating fused π-conjugated pyrene-O-ethyl-ammonium (POE) ligands and a systematic study is conducted to obtain enhanced performance and reliable PeFETs. The optimized (POE)2 SnI4 transistors display the hole mobility over 0.3 cm2  V-1  s-1 , high repeatability, and operational stability. Meanwhile, the derived photo memory devices show remarkable photoresponse, with a switching ratio higher than 105 , high visible light responsivity (>4 × 104  A W-1 ), and stable storage-erase cycles, as well as competitive retention performance (104  s). The photoinduced memory behavior can be benefiting from the insulating nature of quantum-well in 2D perovskite under dark and its excellent light sensitivity. The excellent photo memory behaviors have been maintained after 40 days in a N2 atmosphere. Finally, a 2D perovskite-only transistors with a multi-level memory behavior (16 distinct states) is described by controlling incident light pulse. This work provides broader attention toward 2D perovskite and optoelectronic application.

19.
Nat Protoc ; 19(2): 340-373, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38001366

RESUMO

Crystalline polymer materials, e.g., hyper-crosslinked polystyrene, conjugate microporous polymers and covalent organic frameworks, are used as catalyst carriers, organic electronic devices and molecular sieves. Their properties and applications are highly dependent on their crystallinity. An efficient polymerization strategy for the rapid preparation of highly or single-crystalline materials is beneficial not only to structure-property studies but also to practical applications. However, polymerization usually leads to the formation of amorphous or poorly crystalline products with small grain sizes. It has been a challenging task to efficiently and precisely assemble organic molecules into a single crystal through polymerization. To address this issue, we developed a supercritically solvothermal method that uses supercritical carbon dioxide (sc-CO2) as the reaction medium for polymerization. Sc-CO2 accelerates crystal growth due to its high diffusivity and low viscosity compared with traditional organic solvents. Six covalent organic frameworks with different topologies, linkages and crystal structures are synthesized by this method. The as-synthesized products feature polarized photoluminescence and second-harmonic generation, indicating their high-quality single-crystal nature. This method holds advantages such as rapid growth rate, high productivity, easy accessibility, industrial compatibility and environmental friendliness. In this protocol, we provide a step-by-step procedure including preparation of monomer dispersion, polymerization in sc-CO2, purification and characterization of the single crystals. By following this protocol, it takes 1-5 min to grow sub-mm-sized single crystals by polymerization. The procedure takes ~4 h from preparation of monomer dispersion and polymerization in sc-CO2 to purification and drying of the product.


Assuntos
Estruturas Metalorgânicas , Dióxido de Carbono , Polimerização , Polímeros , Cristalização
20.
Adv Mater ; 36(4): e2305987, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37639714

RESUMO

Multifunctional semiconductors integrating unique optical, electrical, mechanical, and chemical characteristics are critical to advanced and emerging manufacturing technologies. However, due to the trade-off challenges in design principles, fabrication difficulty, defects in existing materials, etc., realizing multiple functions through multistage manufacturing is quite taxing. Here, an effective molecular design strategy is established to prepare a class of multifunctional integrated polymer semiconductors. The pyridal[1,2,3]triazole-thiophene co-structured tetrapolymers with full-backbone coplanarity and considerable inter/intramolecular noncovalent interactions facilitate short-range order and excellent (re)organization capability of polymer chains, providing stress-dissipation sites in the film state. The regioregular multicomponent conjugated backbones contribute to dense packing, excellent crystallinity, high crack onset strain over 100%, efficient carrier transport with mobilities exceeding 1 cm2  V-1  s-1 , and controllable near-infrared luminescence. Furthermore, a homologous blending strategy is proposed to further enhance the color-tunable luminescent properties of polymers while effectively retaining mechanical and electrical properties. The blended system exhibits excellent field-effect mobility (µ) and quantum yield (Φ), reaching a record Φ · µ of 0.43 cm2  V-1  s-1 . Overall, the proposed strategy facilitates a rational design of regioregular semicrystalline intrinsically stretchable polymers with high mobility and color-tunable intense luminescence, providing unique possibilities for the development of multifunctional integrated semiconductors in organic optoelectronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...